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Abstract 

Nowadays is  more and more often necessary to design two dimensional 
reinforced concrete elements both to satisfy architectural demands, and to answer to 
traffic safety requirements in the design of  road and railways infrastructures. 

As a consequence is constantly rising the use of finite elements analysis to model 
structures and to calculate internal actions. Therefore comes to attention the problem 
of reinforcements design, as steel bars should be, in general, displaced along not 
orthogonal directions. 

Consequently, two different kind of design problems can be outlined: 
reinforcement direction choice and reinforcement ratio between the chosen directions  
evaluation. 

Such problems can be easily overcome using a referring mechanical model 
consolidated in literature and written according to the  ultimate plastic behaviour of 
the elements on which is applied an optimization technique  based on genetic 
algorithms. 

In the paper both the ultimate resisting mechanism with generic reinforcement 
directions and the way genetic algorithms are employed to optimize reinforcement 
quantity and direction are shown. 
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1. Introduction 
For the evaluation of internal actions path within a two dimensional concrete structure the most 

common tool is nowadays the use of linear finite elements, like shell, slab or plate.  
In the following the design of concrete shell elements will be considered in detail as the slab and 

plate ones are easily derivable by simplification of the previous one. 
The output of a fem analysis done with shell elements is eight components of internal actions: 

three from the plate (nx, ny, nxy), three from the slab (mx, my, mxy), two out of the plane shear 
components (tx, ty) (fig.1). 

The suitable design model able to take into account this whole bunch of internal actions, derived 
as a lower bound solution, may be considered well established in the literature [1] [2], at least in the 
case of orthogonal reinforcement. 



Moreover, this design model has been recently improved by the introduction of a new safety 
criterion for concrete working in biaxial state of stress, based on a large series of heterogeneous 
experimental tests [3] [4] [5]. 

In the following, the design model for shell elements is generalized, for whichever orientation of 
reinforcement layers, that are very often required in practice for instance in skew slab bridges. 

Moreover a guidance tool is given for the optimum choice of reinforcement directions and/or 
directional reinforcement ratios in order to minimize the global amount of reinforcement. 

For this second aspect the genetic algorithms shall be used, in their optimisation formulation 
based on the genetic mechanisms and struggle for life [6] [7]. 

2. Shell resisting model 
Sign convention for positive internal action components is pictured in fig.1 and fig.2; reinforcement 

orientation and their distance “c” are illustrated in fig.3, with cs and ci respectively top and bottom cover 
to the axis of the reinforcement layers. 
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   Figure 1 : Shell scheme          Figure 2 : Plate scheme 
          

As first step it should be checked whether the shell is cracked or not; this verification may be 
performed in agreement with [8] applying the Ottosen criterion [9] [10] to different levels within the 
element thickness “t”; for this verification concrete will be considered as uncracked and the stresses 
consequently evalued. 
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Figure 3 : Reinforcement layout 
 
If the element results uncracked, reinforcement resisting contribution should be added to the 

concrete one taking into consideration the deformation state in the reinforcement directions. 
On the contrary, if it results to be cracked the sandwich model will be used: two external plates 

should be individuated, able to carry only membrane forces, and an internal layer able to transfer the 
out of the plane shear components. 



The internal layer will be designed, in analogy with the beam approach, along the shear principal 
direction, individuated by tan(ϕo)= ty/tx , considering the principal shear to = sqrt(tx2 + ty2) , where  ϕo is 
the deviation of to with respect to the x axis. If a specific shear reinforcement is required and then a 
truss model is established along the shear principal direction, the following additional membrane 
forces coming from the truss model must be taken into account within the external plates: 
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where θt is the stress field due to principal shear inclination respect to the mean plane of the shell. In 
the external plates, once established a tentative value for the corresponding thickness, the internal 
actions may be evaluated by simple equilibrium conditions as (fig.4) 
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Figure 4 : plates internal actions 

 
where the contributions within brackets should be considered only if a truss model is established. 

The process is now reconducted to the design of a plate with two order of skew reinforcement. 

3. Plate resisting model 
For the description of biaxial concrete behaviour, in agreement with [8], the Kupfer and Gerstle 

proposal is considered [11]. In practice three regions for the behaviour definition of plates may be 
individuated (fig.5): 

 
 In region 0 concrete is in biaxial 

compression state and the plate 
capacity may be enhanced adding 
the contribution of compressed 
reinforcement; 

 In region 2 concrete is able to carry 
the internal actions and only the 
minimum reinforcement for the 
control of  unforeseen cracking is 
required; 

 In region 1 concrete is cracked and 
reinforcement is necessary for the 
equilibrium. 

 

 
Figure 5 : Concrete failure surface 
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Figure 6 : Plates conventions 

 
Then, with reference to fig.6, in which σxr= nxr/tr , σyr= nyr/tr , τxyr= nxyr/tr , and tr (r = s,i) is the plate 

thickness, may be considered a section of the element with a plane parallel to the direction of the 
ultimate stress field in concrete (θ) (fig.7); the following equilibrium equations may be established: 

 
0=−−+ βσρασρθτθσ ββαα sinbcosacossin rrsrrrsrrxyrrxr     (3) 

0=+−−− βσρασρθτθσ ββαα cosbsinasincos rrsrrrsrrxyrryr    (4) 
 

where ραr and ρβr are the geometrical reinforcement ratios respectively in directions α and β in 
reinforcement layer r.  
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Figure 7 : Equilibrium of the section parallel to the compression field 

 
Adding now eq (3) multiplied by cosβ to equation (4) multiplied by sinβ,  ραrσsαr may be derived as: 
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and similarly, deducing equation (4) multiplied by cosα from equation (3) multiplied by sinα, we obtain 
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Figure 8 : Equilibrium of the section orthogonal to the compression field 

 
Considering now a section of the element with a plane orthogonal to the stress field in concrete 

(fig.8) the following equilibrium equations may be established 
          

 0=+−++− rcrrrsrrrsrrxyrrxr cossin'bcos'asincos θσβσρασρθτθσ ββαα  (7) 

0=+−++− rcrrrsrrrsrrxyrryr sincos'bsin'acossin θσβσρασρθτθσ ββαα   (8) 
 

Being the four equation (5),(6),(7),(8), linearly correlated, σcr can be derived from both equations 
(7) and (8) as: 

r
rrsr

r
rrsrrxyrxrcr cos

sin)sin(
cos
cos)cos(tan

θ
ββθσρ

θ
ααθσρθτσσ ββαα −+−−−=   (9) 

or 
r

rrsr
r

rrsr
r

xyr
yrcr sin

cos)sin(
sin
sin)cos(

tan θ
ββθσρ

θ
ααθσρ

θ
τ

σσ ββαα −−−−−=   (10) 

 
In the previous equations θr should be included in the same quadrant of θer (angle on x axis of 

principal tension direction at cracking) and the solutions with nil denominator in equations (5) and (6) 
correspond to cases in which, in disagreement with the code provisions, only one order of 
reinforcement is available (cos(α - β) = 0) or the equilibrium is not possible (sin(θr - α) = 0 and cos(θr - 
β) = 0). 

Design stress range for materials may be expressed for reinforcement as: 
 



)i,sr;,k(f yd

skr ==≤≤− βασ 11     (11) 

 
For concrete stress field the safety criterion proposed in [5] may be adopted: 
 

( )rcdcr .f θσ ∆−≤ 032012      (12) 
 

and if no order of reinforcement results to be yelded: 
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where ∆θr is the deviation between the angle of tensile principal stress at first cracking and plastic 
compression field in concrete, fcd2 is given by (14) in agreement to [8], and σs is the highest of the two 
stresses in each reinforcement layer. (fig.9 and 10) 
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Figure 9 : Safety criterion for concrete 

 (yelded reinforcement) 
Figure 10 : Safety criterion for concrete 

 (not yelded reinforcement) 
 

The analysis of the shell element may be transferred in a non-dimensional field putting: 
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( ) )xy,y,xj(ftm cdjj =⋅= 2µ  

( ) )O,y,xj(ftt cdjj =⋅=η  (out of the plane shear) 
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With the above assumption, equations (2) become: 
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and equations (5),(6),(9),(10) turn to: 
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3. Use of genetic algorithms 
Genocop III algorithm has been used for the optimization of reinforcement design and concrete 

verification, because of its performance in optimizing non linearly restrained problems. 
This algorithm works on two different parallel and interacting populations: a research population 

respecting linear restraints and a reference population respecting the whole restraints. 
The considered variables are reinforcement areas Askr (k = α, β ; r =s,i) and, for every combination 

of internal actions, the non-dimensional parameters ξs, ξi , θs , θi. The objective of the process is the 
minimization of the global reinforcement amount (ΣAskr = min). Restraint conditions are expressed, for 
every combination of internal actions, by equations (11),(12),(13) and the variable linear restraints are: 

• Maximum and minimum reinforcement ratio: 44
max

skr
min tAt ρρ ≤≤  

• Layer thickness domain: )i,sr(c r
*
r =≤≤ 12 ξ  

• rθ  angle domain: )i,sr(r =≤≤ πθ0  

• Global thickness amount: 01≤−+ is ξξ  
The extensive use of this algorithm demonstrated that, even changing substantially the input 

parameters necessary to start the optimization, the standard deviation of the results is very limited, 
provided that the numerical evaluation number is large enough. That means that the algorithm is able 
to find in any case correct results, even if the starting point is very far from the actual solution. 



4. Conclusions 
The methodological approach to design of r.c. and p.c. shell elements, based on a lower bound 

solution, opens the way to a correct evaluation of resisting contribution of skew reinforcement layers. 
The implementation of design equations governing the problem in non dimensional terms means the 
use of a computer program that may be interfaced with a classical structural analysis one, so that the 
process of analysis and design may be correctly integrated. 

Using genetic algorithms in the solution leads to an optimization of global reinforcement amount, 
verifying, at the same time, the resistance of concrete layers subjected to a compressive stress field, 
in agreement with the more recent proposals included in references [3],[4],[5]. 
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