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Over the last two decades, several theories for the design and verification of reinforced concrete (RC) membrane elements have been

proposed on the basis of the experimental investigations conducted at a limited number of laboratories. In actual fact, in the definition of

the behaviour of RC membrane elements, considerable difficulties of an experimental nature are compounded by the objective complex-

ity of the physical model of reference. In this paper the theoretical models deemed most reliable are analysed, and those that can be used

with greater ease for design purposes are identified and compared in terms of accuracy of the results provided, as determined on the

basis of a significant number of tests performed at different laboratories.

Notation

General

Ec elastic modulus of concrete

Es elastic modulus of steel

f 0c compressive strength of standard concrete cylinder

(negative quantity)

fcr stress in concrete at cracking

fc2max compressive strength in 2-direction

f ysx, f ysy yield stress of mild steel bars in x and y directions

respectively

srm spacing of cracks inclined at W
srmx0, srmy0 average spacing of cracks perpendicular to the x and

y reinforcements respectively

x, y direction of longitudinal and transverse steel bars

respectively

cxy shear strain relative to x, y axes

e0 strain in concrete cylinder at peak stress (negative

quantity)

ecr strain in concrete at cracking

ex, ey strain in x and y directions respectively

rx, ry reinforcement ratio for reinforcing steel in x and y

directions respectively

rsx, rxy average stress in x and y reinforcements respec-

tively

rsxcr, rsycr stress in x and y reinforcements at crack location

rx, ry stress applied to element in x and y directions

respectively

s shear stress on element relative to x, y axes

Vecchio^Collins

a maximum aggregate size

e1, e2 principal tensile and compressive strain in concrete

(positive for tension)

W angle of inclination of principal strains to x-axis

Wc angle of inclination of principal stresses in concrete

to x-axis

rc1, rc2 principal tensil and compressive (negative quantity)

stress in concrete

rci compressive stress on crack surface (positive quan-

tity)

rcx, rcy stress in concrete in x and y directions respectively

sci shear stress on crack surfaces

scimax maximum shear stress a crack of given width can

resist

scx, scy shear stress on x and y faces of concrete respec-

tively

scxy shear stress on concrete relative to x, y axes

ssx, ssy shear stress on x and y reinforcements respectively

Hsu

d, r direction of principal compressive and tensile stress

of concrete after cracking, respectively

Ep elastic modulus of prestressing steel

E 0p tangential modulus of Ramberg^Osgood curve at

zero load

fpu ultimate stength of prestressing steel

m shape parameter
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1, 2 direction of applied tensil and compressive principal

stress respectively

a angle of inclination of d-axis with respect to x-axis

a2 fixed-angle of inclination of 2-axis with respect to x-

axis

c21 average shear strain in 2,1-coordinate

c210 average shear strain in 2,1-coordinate at maximum

shear stress sm21
ed, er average principal strains in d and r directions

respectively

edec decompression stress

e1, e2 average normal strains in 1- and 2-directions

respectively

z softening coefficient of concrete in compression

rxp, ryp prestressed steel ratios in x and y directions respec-

tively

rd, rr principal stresses of concrete in d and r directions

respectively

rc1, rc2 average normal stress of concrete in 1- and 2-direc-

tions respectively

rsxp, rsyp prestressed steel stress in x and y direction respec-

tively

sc21 average shear stress of concrete in 2,1-coordinate

sm21 average maximum shear stress in 2,1-coordinate

Marti^Kaufmann

n, t direction of principal tensile and compressive stress

of concrete after cracking

W inclination of crack with respect to x-axis

rcnr, rctr concrete normal stress at crack in n and t directions

respectively

Carbone^Giordano^Mancini

nx, ny non-dimensional normal stress in x and y directions

respectively (rx=f
0
c, ry=f

0
c)

v non-dimensional shear stress in x, y-coordinate

(s=f 0c)

vmax, vmin maximum and minimum non-dimensional shear

stress in x, y-coordinate respectively

DW angle of deviation between the directions of princi-

pal compressive stresses in concrete in serviceabil-

ity conditions and at failure

We angle of inclination of compressive stresses in con-

crete at serviceability conditions

Wpl angle of inclination of compressive stresses in con-

crete according to the assumption of perfectly plas-

tic behaviour

Wu angle of inclination of compressive stresses in con-

crete at failure

n efficiency factor

rc oblique compressive stress in concrete

ox, oy mechanical reinforcement ratios in x and y direc-

tions respectively (rxf ysx=f
0
c, ry f ysy=f

0
c)

Introduction

An analytical review of the studies conducted on reinforced con-

crete (RC) membrane elements over the last two decades makes

it possible to enunciate four basic theoretical modelling propo-

sals.

(1) The Modified Compression-Field Theory (MCFT) conceived by

Vecchio and Collins (1986) on the basis of investigations per-

formed at the University of Toronto.1^4

(2) The analysis of the behaviour of RC membranes through a

rotating crack and a fixed angle crack approach, proposed by

Hsu et al. (1991^1997), based on tests performed at the Uni-

versity of Houston.5^10

(3) The Cracked Membrane Model developed by Marti and Kauf-

mann (1999) on the basis of studies conducted at the ETH of

Zurich.11^13

(4) The plastic model, based on a large number of tests, devel-

oped by Carbone, Giordano, Mancini (1999^2000) at the

Politecnico of Turin.14^16

The different models are briefly illustrated and discussed below.

Then, the models that can be used with ease for verification and

design purposes are identified and compared in order to deter-

mine their reliability and working range, with reference to a large

number of experimental results which are deemed reliable.

The Vecchio^Collins Model

The MCFT relies on the concept of smeared crackingAthat is, it

analyses the behaviour of a cracked element by considering a

portion of it which is long enough to include several cracks and

assuming that the effects of such cracks are evenly distributed

over the entire portion. According to this model, which can be

viewed, ultimately, as a macromodel, compatibility, equilibrium

conditions and constitutive laws must be taken into account as

follows.

Compatibility of strains

The concept of smeared cracking entails the need to assume a

perfect bond between concrete and steelAthat is, the composite,

cracked material is treated as a continuum. If the three strain

components, ex, ey, cxy, are known, x and y being the orthogonal

directions of the reinforcement, then, through Mohr’s circle, it is

possible to determine the state of strain along any direction. In

particular, we find

cxy ¼
2ðex � e2Þ
tan W

ð1Þ

ex þ ey ¼ e1 þ e2 (2)

tan2 W ¼ ðex � e2Þ
ðey � e2Þ

¼ ðe1 � eyÞ
ðe1 � exÞ

¼ ðe1 � eyÞ
ðey � e2Þ

¼ ðex � e2Þ
ðe1 � exÞ

ð3Þ

where e1 and e2 are the principal strains and W identifies their

direction.

Equilibrium conditions

Equilibrium conditions can be set with reference to the free body

diagram shown in Figure 1

rx ¼ rcx þ rxrsx ð4Þ

ry ¼ rcy þ ryrsy ð5Þ

s ¼ scx þ rxssx ð6Þ

s ¼ scy þ ryssy ð7Þ

and, having set scx ¼ scy ¼ scxy, stress conditions can be defined
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when rcx, rcy and scxy have been determined. In this case too, with

the aid of Mohr’s circle, we can write

rcx ¼
rc1 � scxy

tanWc
ð8Þ

rcy ¼ rc1 � scxy tan Wc (9)

rc2 ¼ rc1 � scxyðtan Wc þ cot WcÞ (10)

where rc1 and rc2 are the principal stresses and Wc, identifies their
direction.

Constitutive laws

Though they are derived from the laws of the individual materials,

constitutive laws must be defined with reference to the mean

composite material corresponding to the assumption of smeared

cracking. For the behaviour of steel, a bilinear law is assumed,

with yield strength as its limit value; it is also assumed that the

reinforcement is able to carry only the longitudinal stress, and

hence ssx ¼ ssy ¼ 0. The constitutive law for concrete in com-

pression, worked out directly from test results (30 panels tested

in Toronto), highlights the reduction in strength in the principal

direction of compression brought about by the tensile stresses

applied orthogonally to the latter. The proposed law is as follows

rc2 ¼ fc2max 2
e2

e0

� �
� e2

e0

� �2
" #

ð11Þ

where

fc2max

f 0c
¼ 1
0�8� 0�34ðe2=e0Þ

� 1 ð12Þ

The constitutive law proposed for concrete in tension is

rc1 ¼ Ece1 for e1 � ecr ð13Þ

rc1 ¼
fcr

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
200e1
p for e1 > ecr ð14Þ

Furthermore, it is assumed that the principal directions of

strain and stress coincide, even though the tests have revealed

angular differences of up to D108 between W and Wc.
A study of the local behaviour of the crack is conducted by

comparing stress conditions in the plane of the crack, which is

taken to be the principal plane, based on the assumption of

mean behaviour, with the real forces acting on the same plane

(Figure 2). Since the two stress systems correspond to the same

actions applied we can write

rxrsx sinWþ rc1 sin W ¼ rxrsxcr sin W� rci sin W� sci cos W ð15Þ

ryrsy cos Wþ rc1 cos W ¼ ryrsycr cos W� rci cos W� sci sin W ð16Þ

which means that equilibrium conditions can be reached without

any actions being transmitted across the crack only if

rsyðrsycr � rsyÞ ¼ rxðrsxcr � rsxÞ ¼ rc1 (17)

The constitutive law for the actions transferred across the

crack is proposed on the basis of the tests performed by

Walraven17

sci ¼ 0�18scimax þ 1�64rci � 0�82 r2ci
scimax

ð18Þ

where

scimax ¼
ffiffiffiffiffiffiffiffi
�f 0c

p
0�31þ 24w=ðaþ 16Þ ð19Þ

where a represents maximum aggregate diameter and w is the

mean width of the crack, w ¼ e1srm, where

srm ¼
1

sin W
srmx0

þ cos W
srmy0

ð20Þ

where srmx0 and srmy0 stand for the spacing of the cracks in the x

and y directions, respectively.

Overview

The complex systems of non-linear equations governing the

response of the element must be solved through an iterative pro-

cess, according to the instructions supplied by the Vecchio and

Collins. Although the computation process involved is too burden-

some to be used in today’s design practice, the solutions obtained

are appreciably accurate. This model must be given credit for

having rationalised the approach to the definition of the mechan-

ical behaviour of RC membrane elements, and having pointed out

the marked reduction in strength that takes place in the compres-

sive stress fields of the concrete when appreciable tensile stress

fields are active in a direction orthogonal to them.

σy

σy

σx

σcx

σsx

τcx, τsx

τ

τ

τ

Fig. 1 Free-body diagram of sectioned element

σsy σsycr

σy σy

σxσx

σsxcr

θ θ

σc1

σsx

τci

σci
ττ

τ τ

Fig. 2 Comparison of local stresses at a crack with calculated average
stresses
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Hsu’s models

Rotating crack type model

The first model proposed by Hsu, of the rotating crack type, is

based on the assumption that the opening of the cracks is fol-

lowed by the formation of a system of struts: compression struts

of concrete, and tension struts of steel. This system is assumed to

be arranged at an angle a relative to the x, y directions of the

reinforcement, and it is also assumed that the same angle, a,
identifies the principal directions of the stresses and strains in

the concrete (which are therefore assumed to coincide). Further-

more, it is assumed that the reinforcement can only carry long-

itudinal stresses.

Equilibrium equations. With reference to Figure 3, it proves

easy to write the following three equilibrium conditions

rx ¼ rd cos
2 aþ rr sin

2 aþ rxrsx þ rxprsxp ð21Þ

ry ¼ rd sin
2 aþ rr cos

2 aþ ryrsy þ ryprsyp ð22Þ

s ¼ ð�rd þ rrÞ sin a cos a ð23Þ

Compatibility equations. Always working in terms of smeared

cracking, and hence of a continuum equivalent to the cracked

membrane element, we can write

ex ¼ ed cos
2 aþ er sin

2 a ð24Þ

ey ¼ ed sin
2 aþ er cos

2 a ð25Þ

cxy ¼ 2ð�ed þ erÞ sin a cos a ð26Þ

To solve equations (21) to (26) it is necessary to introduce six

corresponding constitutive relationships for the materials, two of

which are for concrete in directions d and r and two are for each of

the two types of steel, in directions x and y.

Constitutive laws. The behaviour of concrete in compression is

according to the proposal by Vecchio and Collins described

above

rd ¼ zf 0c 2
ed

ze0

� �
� ed

ze0

� �2
" #

for ed=ze0 � 1 ð27Þ

rd ¼ zf 0c 1� ed=ze0 � 1
2z� 1

� �2
" #

for ed=ze0 > 1 ð28Þ

where the softening coefficient (0 < z < 1) assumes the following

form

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�7� ðer=edÞ

p ð29Þ

For the concrete in tension the following expressions are

adopted instead

rr ¼ Ecer for er � ecr ð30Þ

rr ¼
fcr

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � ecr

0�005

r for er > ecr ð31Þ

For ordinary steel the law adopted is an elasto-plastic bilinear

law whose limit value corresponds to yield strength. For prestres-

sing steel, account taken of the pre-elongation associated with

prestressing and its possible increase up to concrete decompres-

sion, the proposed constitutive law is

rsp ¼ Epðedec þ eÞ for rsp � 0�7 fpu ð32aÞ

rsp ¼
E 0pðedec þ eÞ

1þ
E 0pðedec þ eÞ

fpu

� 	m( )1=m
for rsp > 0�7 fpu ð32bÞ

In this manner we get a system consisting of 13 non-linear

equations in 16 unknowns, of which nine are stress components

and six are strain components. If the three external stress com-

ponents, rx, ry, s, are assumed to be known, the system can be

solved by means of an iterative procedure suggested by Hsu.

At a later stage, Hsu points out that the assumption of angle a
and angle a2 being the same (a and a2 identifying the inclination of
the principal axes of the stresses in the concrete struts after the

opening of the cracks and the inclination of the principal axes of

the stresses applied to the element, respectively) applies only if

the values of smeared strength of steel in directions x and y also

coincide. If they do not, when the cracks are formed, equilibrium

σy

σy

σx

σx

σr

σr

σd

σd

ατ

τ

τ

τ

σy

σy

σx

σxτ

τ

τ

τ

r

y

d

x

σd sin2 α + σr cos2 α

σd cos2 α + σr sin2 α

ρyσsy + ρypσsyp

ρxσsx + ρxpσsxp
(σd + σr) sin α cos α

Fig. 3 Stress conditions in reinforced concrete membrane element
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conditions can be reached only if angle a differs from angle a2 by a
quantity b (Figure 4). Obviously, equilibrium and congruence con-

ditions remain unchanged and the constitutive laws of the

materials are only partly modified. In particular, for concrete in

compression a different softening coefficient is proposed

z ¼ 0�9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 400er
p ð33Þ

while for the concrete in tension the constitutive law becomes

rr ¼ Ecer for er � 0�00008 ð34Þ

rr ¼ fcr
0�00008

er

� �0�4
for er > 0�00008 ð35Þ

Another phenomenon which is observed in the tests is the kink-

ing of the steel barsAthat is, an apparent reduction in their long-

itudinal strength due to the effect of tension combined with the

dowel effect triggered by the transverse behaviour along the

crack. To be able to take this phenomenon into account, the con-

stitutive law of steel is modified by introducing an apparent yield

stress.

In any case we return to a system consisting of 13 non-linear

equations. Another important observation, arising from a sys-

tematic application of the proposed model to a set of 13 panels

subjected to tests, it that the physical model based on the rotation

of the cracking angle cannot describe the behaviour of RC mem-

brane elements having a II mechanical reinforcement ratio, in

either direction, which is not within the range

0�4 �
ryf ysy
rxf ysx

� 2�5 ð36Þ

which amounts to saying that the model is valid only if angle a is

within the range

338 � a � 578 ð37Þ

If it is not, it becomes necessary to resort to the third model

proposed by Hsu, which consists of a softened truss model char-

acterised by a fixed cracking angle.

Fixed crack type model

The equations characterising the behaviour of this model can be

written with reference to Figures 4 and 5. In particular, based on

equilibrium considerations, we get

rx ¼ rc2 cos
2 a2 þ rc1 sin

2 a2 þ sc212 sin a2 cos a2 þ rxrsx (38)

ry ¼ rc2 sin
2 a2 þ rc1 cos

2 a2 þ sc212 sin a2 cos a2 þ ryrsy (39)

s ¼ ð�rc2 þ rc1Þ sin a2 cos a2 þ sc21ðcos2a2 � sin2 a2Þ (40)

In these equations, sc21 stands for mean shear transferred

along the crack, and can be represented through the following

relationship, of an experimental nature

sc21 ¼ sm21 1� 1� c21
c210

� �6
" #

ð41Þ

For the compatibility equations, always with reference to a con-

tinuum equivalent to smeared cracking, this gives

ex ¼ e2 cos
2 a2 þ e1 sin

2 a2 þ
c21
2

2 sin a2 cos a2 ð42Þ

ey ¼ e2 sin
2 a2 þ e1 cos

2 a2 þ
c21
2

2 sin a2 cos a2 ð43Þ

cxy

2
¼ ð�e2 þ e1Þ sin a2 cos a1 þ

c21
2
ðcos2 a2 � sin2 a2Þ ð44Þ

As to the constitutive laws, for the concrete in compression, a

new softening coefficient is proposed

σy

σy

σ1

σ1

σr

σr

σd

σd
σ2

σ2

σx

σx

σy
c

σx
c

αα2

τ

τ

τ

τ τ

r

yy

d

xx

ρyσsy

ρxσsx

1

2

Fig. 4 Stress conditions in reinforced concrete
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z ¼ 5�8ffiffiffiffi
f 0c

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 400

Z
e1

s ð45Þ

where

Z ¼
ryf ysy � ry

rxf ysx � rx
ð46Þ

Ultimately, we get a system consisting of twelve non-linear

equations to be solved by means of an ad hoc iterative process.

In actual fact, this model represents a considerable improvement

over the earlier models in that it is more reliable and makes it

possible to extend the validity of the procedure to the instances in

which coefficient Z is in the following range

0�2 � Z � 5 (47)

that is, within a range twice as big as in the previous case.

Overview

All in all, the different models proposed by Hsu and his collabora-

tors can be rated as a valuable approach to the behaviour of RC

membranes, but the resolution processes involved are too com-

plex to be used widely by practising designers.

The Marti^Kaufmann Model

The model proposed by Marti and Kaufmann combines the basic

concepts of MCFT with the tension chord model developed by the

authors. In actual practice, the spacing of the cracks and the

tensile stresses between the cracks are determined with the aid

of constitutive laws for bond and equilibrium equations, which are

formulated in terms of stresses at the cracks, instead of in terms

of mean stresses between cracks (smeared cracking). The faces

of the cracks are assumed to be stress-free, able to rotate and

arranged orthogonally to the principal direction of the principal

strains.

With reference to Figure 6 we can write the following equilib-

rium equations

rx ¼ rxrsxcr þ rcnr sin
2 Wr þ rctr cos

2 Wr � sctnr sinð2WrÞ ð48Þ

ry ¼ ryrsycr þ rcnr cos
2 Wr þ rctr sin

2 Wr þ sctnr sinð2WrÞ ð49Þ

s ¼ ðrcnr � rctrÞ sin Wr cos Wr � sctnr cosð2WrÞ ð50Þ

σy σy
c

sx
c

σx

αα2τ

τ

τ

τ

r

yy

d

xx

1
2

Fig. 5 Crack directions in fixed- and
rotating-angle models
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τ
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τ
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1

σctr cos ϑr

σcnr sin ϑr

σcnr sin ϑr

σcnr sin ϑr

τcntr cos ϑr

τctnr cos ϑr

τctnr sin ϑr

τcntr sin ϑr

ρxσsxcr

ρyσsycr

Fig. 6 Cracked membraneAgeneral considerations

FIRST PROOFS CJ I:/Thomas Telford/Sc/sc-39.3d Page: 6 SC 39 Keyword

Carbone et al.

6 Structural Concrete, 2001, 2, No. ?



in which, by virtue of the foregoing assumptions, we must set

rcnr ¼ sctnr ¼ 0.

For stress in the concrete compressive field a parabolic expres-

sion is adopted, of the following form

rctr ¼
f c2maxðe22 þ 2e2e0Þ

e20
ð51Þ

fc2max ¼
ðf 0cÞ

2=3

0�4þ 30e1
� f 0c ð52Þ

e1=e2 being the principal strains and ec0 the peak strain of the

constitutive law. The mean spacing of the cracks can be obtained

through Vecchio and Collins’ expression

srm ¼
1

sin Wr
srmx0

þ cos W
srmz0

ð53Þ

Now, considering ex, ey, e2 as unknowns and observing that

e1 ¼ ex þ ey � e2 and tan2 W ¼ ðex � e2Þ=ðey � e2Þ, all the quantities

appearing in equations (48) to (50) can be expressed as a func-

tion of the unknown strain components; rsxcr and rsycr, in fact, are

derived from the constitutive equations of the tension chord

model, and rctr, from equations (52) and (53). Hence, for each

set of stresses, rx=ry=s, it is possible to work out the correspond-

ing set of strains, ex=ey=e2, by means of an iterative procedure.

If it is assumed that the tensile stresses acting between, two

cracks vary linearly from zero to fcr over half the distance between

the cracks, we get the following equation

tan2 Wrrxð1þ nryÞ þ tan Wrrx
ry

s
� fcr
2s
ð1þ nryÞ

� 	

¼ cot2 Wrryð1þ nrxÞ

þ cot Wrry
rx

s
� fcr
2s
ð1þ nrxÞ

� 	 ð54Þ

which, under the assumption of fcr ¼ 0, coincides with the typical

equation of the compression field approach worked out by Bau-

mann18 in 1972

tan2 Wrrrð1þ nryÞ þ tanWrrx
ry

s
¼ cot2 Wrryð1þ nrxÞ þ cot Wrry

rx

s

ð55Þ

At this point, by introducing the assumptions of limit analysis

we can work out the following three equations

s2 � ðrxf ysx � rxÞðryf ysy � ryÞ ¼ 0 ð56Þ

s2 � ðfc � rx;yf ysx;y þ rx;yÞðrx;yf ysx;y � rx;yÞ ¼ 0 ð57Þ

s2 � f2c
4
¼ 0 ð58Þ

Introducing the following expression for the compressive

strength of concrete

fc2max ¼ 1�7f 0cð2=3Þ ð59Þ

and assuming that the strain in steel, in the direction in which it

does not reach the yield point, is 0˝8 f ys=Es at the ultimate limit

state, the equations describing the limit surface become

s2 ¼ ðrxf ysx � rxÞðryf ysy � ryÞ ð60Þ

s2 ¼ ðrx;yf ysx;y � rx;yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 25

3
f 0c
ð2=3Þ

rx;yf ysx;y � rx;y

s
� 29
12

 !
ð61Þ

s2 ¼ 25
29

f 0c
ð2=3Þ

� �2

ð62Þ

Figure 7 illustrates the limit surface obtained with the cracked

membrane model and the design equations in their simplified

form (equations (60)^(62)).

It can be concluded that the model developed by Marti and

Kaufmann, by introducing simplifications that make for improved

safety, represents a valid instrument for the design and checking

of RC membrane elements, with a degree of computational com-

plexity that can be rated as acceptable for current design pur-

poses.

Model by Carbone, Giordano and Mancini

The model proposed by Carbone, Giordano and Mancini is based

on the assumption that the strength of concrete subjected to

biaxial stresses is correlated to the angular deviation DW between

angle Wel, which identifies the principal compressive stresses in

uncracked state, incipient cracking conditions, and angle Wu,

1·2

2·5

2·5

0

0

τ/fc′ (2/3)

ρyfysy – σy/fc′ (2/3)

σsr = fy σsr = fyσsr = fu

ρxfyx – σx/fc′ (2/3)

1·2

2·5

2·5

0

(b)

0·85 0·85

62

61

60
61

(a)

0

τ/fc′ (2/3)

ρyfysy – σy/fc′ (2/3)

ρxfyx – σx/fc′ (2/3)

Fig. 7 Failure surfaces: (a) cracked membrane; and (b) design equations
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which identifies the inclination of the oblique stress field that is

present in concrete when the ultimate limit state is reached. With

increasing DW, concrete damage increases progressively and con-

crete strength is reduced accordingly.

Initially, angle Wu is evaluated numerically by reproducing, with

the aid of ADINA, a significant number of the tests described by

Vecchio, Collins and Belarbi, and Hsu in which failure was clearly

seen to occur in the concrete. To this end, the concrete is

described by means of a constitutive law defined as a function of

the initial strain modulus, the tensile strength and the compres-

sive strength as determined in a uniaxial test and the correspond-

ing strains. In actual practice, with reference to the method

proposed by Von Grabe and Tworuschka,19 a constitutive law cor-

responding, at least in the ascending branch, to Sargin’s law is

described. Furthermore, the model uses the failure surface pro-

posed by Kotsovos20 on the basis of extensive testing conducted

at the Imperial College, London.

For steel, an elasto-plastic constitutive law is adopted, with a

work-hardening modulus corresponding to 1% of the elastic mod-

ulus.

Based on the results of the numerical calculations, an interpo-

lating law of the type

u ¼ rc

jf 0cj
¼ 0�55� 0�12 ln jDWj ð63Þ

is proposed for ultimate concrete strength.

A further step consists of demonstrating that angle Wu, can be

viewed as coinciding, with an acceptable degree of approximation,

with angle Wpl, which identifies the inclination of the field of obli-

que stresses in concrete according to the assumption of perfectly

plastic behaviour. According to this assumption, the effect of the

actions exchanged between the surfaces of the crack is a vari-

ation in the angle of the oblique compressive stress field, which

can be evaluated, under the assumption of smeared cracking,

with respect to the angle of the crack. With reference to Figure 8

it then becomes possible to impose the following equilibrium con-

ditions

rx þ s cot Wpl � rsxrx ¼ 0 ð64Þ

sþ rx cot Wpl � rsyry cotWpl ¼ 0 ð65Þ

s tan Wpl � rx þ rsxrx � rc ¼ 0 ð66Þ

s� ry tanWpl þ rsyry tan Wpl � rc tan Wpl ¼ 0 ð67Þ

By making the necessary substitution and introducing the

strength criterion given by expression (63), we get an equation in

one unknown, Wpl
s

jf 0cj
tan Wpl þ cot Wplð Þ � 0�55� 0�12 ln jWpl � Welj½ � ¼ 0 ð68Þ

By introducing the limit strength conditions for the materials

(�f ysx � rsx � f ysx, �f ysy � rsy � f ysy, rc � njf 0cjÞ and working in

dimensional terms, we may now work out the following system of

inequalities

v 
 �ðox þ nxÞ tan Wpl ð69Þ

v � ðox � nxÞ tanWpl ð70Þ

v 
 ð�oy þ nyÞ cot Wpl ð71Þ

v � ðoy � nyÞ cotWpl ð72Þ

v � n sin Wpl cosWpl ð73Þ

By solving this system it proves possible to identify a range of

values of v corresponding to the strength conditions of the ele-

ment, as a function of ox, oy, nx, ny, DW. Figure 9 illustrates the

relationship v ¼ fðWpl), for specific values of ox ¼ 0�16=oy ¼ 0�06=

σxσx θp1

θp1

ρxσsxρxσsx

ρyσsy
ρyσsy

σyσy

σc

ττ

ττ

1

Fig. 8 Plastic equilibrium condition
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Fig. 9 Graphical solution of disequation
system (69) to (73)
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nx ¼ ny ¼ �0�17=Wel ¼ 458. It should noted that the presence of

limit shear, vmin, arising from the mathematical formulation of the

model, identifies a situation in which failure of the reinforcement

occurs by yielding in compression in pre-cracked elements.

This situation is very seldom encountered in actual fact, as it

corresponds to non-monotonic loading conditions (not covered by

the model) or at all events non-proportionally increasing con-

ditions. In situations of this sort, in fact, a pre-cracked element

might happen to have at least one order of reinforcement yielded

in compression. This type of loading conditions is not covered by

the proposed model, since it would be necessary to consider

again the contribution of previously cracked concrete, which,

upon the closing of the crack, recovers its ability to transfer com-

pressive stresses normal to the crack. It is also possible to plot

interaction surfaces nx=ny=vmax and nx=ny=vmin (Figures 10(a) and

10(b)) so as to achieve a presentation of the results formally

similar to that of the Marti^Kaufmann model.

The resisting model for concrete described above can be

refined further by making 6, non-dimensional with respect to

fc2 ¼ 0�6ð1� f ck=250Þjf 0cj, as defined in CEB-FIP Model Code 90,

instead of f c; in this case, equation (63) can be replaced with a

linear equation

rc

fc2
¼ 1� 0�032jDWj ð74Þ

However, if the application of equation (74) supplies an esti-

mate of the failure load for which no order of reinforcement turns

out to be yielded, the calculation can be refined even further by

repeating the computation by means of a corrected criterion,

through the equation

rc

fc2
¼ 0�85 jf

0
cj

f c2
� rs

f ys
0�85 jf

0
cj

fc2
� 1

� �
ð75Þ

and iterating the process until two successive steps give two

values of the ultimate load which are coincident for design pur-

poses.

Comparison of the design models

From the foregoing considerations it can be seen that the only

models that lend themselves to current design use (e-g. following

a finite-element elastic-linear analysis) are the Marti^Kaufmann

and the Carbone^Giordano^Mancini models.

Although both models make it possible to plot interaction sur-

faces, a direct comparison cannot be easily performed. It proves

much easier to assess the degree of accuracy achieved by the two

models in predicting a large number of test results which are

generally deemed reliable.

This has been done by referring to the tests listed in Table 1.

The main mechanical parameters of these tests are reported in

Table 2. In Table 3 the experimental (sexp) and calculated (scal)

maximum tangential stresses and the sexp=scal related ratios are

reported, following the Marti^Kaufmann and Carbone^Giordano^

Mancini approaches.

In Figures 11(a) and 11(b) the same comparison between

theoretical and experimental results is pictured. We can draw

the following conclusions.

L The two models supply virtually identical results when failure

is reached though the yielding of both orders of reinforce-

ment.

L The Marti^Kaufmann model provides a better approximation

in the presence of shear alone, but gives rise to appreciable

errors in the presence of membrane actions and shear; in the

latter case, in fact, it is exceedingly conservative.

L Although it is less accurate in the presence of shear alone,

the Carbone^Giordano^Mancini model supplies the same

degree of approximation even in the presence of shear and

membrane actions.

Hence it can be concluded that for the design of RC membrane

elements subjected to membrane actions and shear the second

model is in closer agreement with physical reality.
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Fig. 10 Resisting domain for (a) vmax and (b) vmin, where ye1 ¼ 458, ox ¼ oy ¼ 0�3

Table 1 List of tests

Author Test

Vecchio and Collins3 PV3/PV4/PV6/PV10/PV11/ PV12/PV16/
PV19/PV20/PV21/PV22/PV23/PV25/
PV27/PV28

Belarbi and Hsu7 A1/A2/A3/A4/B1/B2/B3/B4/B5/B6
Sumi and Kawamata21 A-1/A-2/A-3
Watanabe and Muguruma22 PL45D/PL45D1/PL45D2
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Conclusions

In this study, several models for the design and checking of RC

membrane elements are analysed and discussed with a view to

identifying those that are in closest agreement with the experi-

mental results. It is pointed out that only two models are suitable

for practical design purposes, especially for the design and check-

ing of elements designed using the finite-element method. While

both models ensure acceptable degrees of reliability, the Marti^

Kaufmann model yields more accurate results in dealing with ele-

ments subjected to shear alone, and the Carbone^Giordano^Man-

cini model is more suitable to deal with the simultaneous

presence of all membrane actions.

Table 3 Experimental and calculated maximum tangential stresses

Marti^Kaufmann Carbone^Giordano^Mancini

Test sexp (MPa) scal (MPa) sexp=scal scal (MPa) sexp=scal

PV3 3˝07 3˝18 0˝97 3˝18 0˝97
PV4 2˝89 2˝57 1˝13 2˝57 1˝13
PV6 4˝55 4˝76 0˝96 4˝76 0˝96
PV10 3˝97 3˝95 1˝00 3˝46 1˝15
PV11 3˝56 3˝60 0˝99 3˝55 1˝00
PV12 3˝13 2˝52 1˝24 2˝09 1˝50
PV16 2˝14 1˝89 1˝13 1˝89 1˝13
PV19 3˝95 3˝71 1˝06 3˝19 1˝24
PV20 4˝26 4˝24 1˝00 3˝70 1˝15
PV21 5˝03 5˝20 0˝97 4˝65 1˝08
PV22 6˝07 6˝27 0˝97 6˝02 1˝01
PV23 8˝87 6˝46 1˝37 8˝21 1˝08
PV25 9˝12 6˝18 1˝48 8˝51 1˝07
PV27 6˝35 6˝46 0˝98 6˝58 0˝97
PV28 5˝80 6˝14 0˝94 6˝46 0˝90
A1 2˝28 2˝65 0˝86 2˝65 0˝86
A2 5˝38 5˝52 0˝97 5˝52 0˝97
A3 7˝67 7˝99 0˝96 7˝99 0˝96
A4 11˝33 10˝50 1˝08 12˝20 0˝93
B1 3˝97 3˝83 1˝04 3˝77 1˝05
B2 6˝14 6˝64 0˝92 6˝47 0˝95
B3 4˝37 4˝60 0˝95 4˝77 0˝92
B4 5˝06 5˝33 0˝95 4˝95 1˝02
B5 7˝17 8˝02 0˝89 7˝61 0˝94
B6 9˝15 9˝55 0˝96 9˝51 0˝96
A-1 4˝54 4˝24 1˝07 4˝24 1˝07
A-2 5˝74 5˝88 0˝98 5˝88 0˝98
A-3 7˝14 6˝58 1˝08 6˝70 1˝07
PL45D 2˝84 2˝77 1˝03 2˝77 1˝03
PL45D1 3˝97 4˝17 0˝95 4˝17 0˝95
PL45D2 7˝60 8˝49 0˝90 8˝30 0˝92
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Fig. 11 Experimental plotted against calculated panel strength by: (a) Marti and Kaufmann; and (b) Carbone, Giordano and Mancini

Table 2 Mechanical parameters of tests

Test rx=s ry=s rx f ysx (MPa) ry f ysy (MPa) fc (MPa)

PV3 0˝00 0˝00 0˝0048 662˝0 0˝0048 662˝0 26˝6
PV4 0˝00 0˝00 0˝0106 242˝0 0˝0106 242˝0 26˝6
PV6 0˝00 0˝00 0˝0179 266˝0 0˝0179 266˝0 29˝8
PV10 0˝00 0˝00 0˝0179 276˝0 0˝0100 276˝0 14˝5
PV11 0˝00 0˝00 0˝0179 235˝0 0˝0131 235˝0 15˝6
PV12 0˝00 0˝00 0˝0179 469˝0 0˝0045 269˝0 16˝0
PV16 0˝00 0˝00 0˝0074 255˝0 0˝0074 255˝0 21˝7
PV19 0˝00 0˝00 0˝0179 458˝0 0˝0071 299˝0 19˝0
PV20 0˝00 0˝00 0˝0179 460˝0 0˝0089 297˝0 19˝6
PV21 0˝00 0˝00 0˝0179 458˝0 0˝0130 302˝0 19˝5
PV22 0˝00 0˝00 0˝0179 458˝0 0˝0152 420˝0 19˝6
PV23 70˝39 70˝39 0˝0179 518˝0 0˝0179 518˝0 20˝5
PV25 70˝69 70˝69 0˝0179 466˝0 0˝0179 466˝0 19˝2
PV27 0˝00 0˝00 0˝0179 442˝0 0˝0179 442˝0 20˝5
PV28 0˝32 0˝32 0˝0179 483˝0 0˝0179 483˝0 19˝0
A1 0˝00 0˝00 0˝00596 444˝9 0˝00596 444˝9 42˝2
A2 0˝00 0˝00 0˝01193 462˝8 0˝01193 462˝8 41˝3
A3 0˝00 0˝00 0˝01789 446˝5 0˝01789 446˝6 41˝7
A4 0˝00 0˝00 0˝02982 469˝9 0˝02982 469˝9 42˝5
B1 0˝00 0˝00 0˝01193 462˝8 0˝00596 444˝9 45˝3
B2 0˝00 0˝00 0˝01789 446˝6 0˝01193 462˝8 44˝1
B3 0˝00 0˝00 0˝01789 446˝5 0˝00596 444˝9 44˝9
B4 0˝00 0˝00 0˝02982 469˝9 0˝00596 444˝9 44˝8
B5 0˝00 0˝00 0˝02982 469˝9 0˝01193 462˝8 42˝8
B6 0˝00 0˝00 0˝02982 469˝9 0˝01789 446˝6 43˝0
A-1 0˝00 0˝00 0˝01060 400˝0 0˝01060 400˝0 22˝6
A-2 0˝00 0˝00 0˝01470 400˝0 0˝01470 400˝0 21˝7
A-3 0˝00 0˝00 0˝02000 400˝0 0˝02000 400˝0 21˝1
PL45D 0˝00 0˝00 0˝00870 318˝0 0˝00870 318˝0 28˝1
PL45D1 0˝00 0˝00 0˝01310 318˝0 0˝01310 318˝0 30˝9
PL45D2 0˝00 0˝00 0˝02610 318˝0 0˝02610 318˝0 30˝9
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