

"Dissemination of information for training" workshop

18-20 February 2008

Brussels

EN 1992 Eurocode 2: Design of concrete structures

Organised by European Commission: DG Enterprise and Industry, Joint Research Centre

with the support of CEN/TC250, CEN Management Centre and Member States

Wednesday, February 20 – Palais des Académies

EN 1992 - Eurocode 2: Baron Lacquet room	Design of concrete structures	
9:00-10:30	EN1992-1-1	J. Walraven <i>TU Delft</i>
10:30-11:00	Coffee	
11:00-12:00	EN1992-1-1	J. Walraven <i>TU Delft</i>
12:00-13:30	Lunch	
13:30-15:30	EN1992-2	G. Mancini Politecnico di Torino
15:30-16:00	Coffee	
16:00-17:00	EN1992-3	T. Jones <i>Arup</i>

All workshop material will be available at <u>http://eurocodes.jrc.ec.europa.eu</u>

EN1992-1-1

J. Walraven TU Delft

TUDelft

					S	trength	classe	s for co	ncrete					
f _{ck} (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80	90
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105
f _{om} (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98
f _{ctm} (MPa)	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0
f _{ctk,0,05} (MPa)	11	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5
f _{ctk,0,95} (MPa)	2,0	2,5	2,9	3,3	3,8	4,2	4,6	4,9	5,3	5,5	5,7	6,0	6,3	6,6
E _{om} (Gpa)	27	29	30	31	32	34	35	36	37	38	39	41	42	44
ε _{c1} (‰)	1,8	1,9	2,0	2,1	2,2	2,25	2,3	2,4	2,45	2,5	2,6	2,7	2,8	2,8
ε _{cu1} (‰)					3,5					3,2	3,0	2,8	2,8	2,8
ε _{c2} (‰)					2,0					2,2	2,3	2,4	2,5	2,6
ε _{cu2} (‰)					3,5					3,1	2,9	2,7	2,6	2,6
n					2,0					1,75	1,6	1,45	1,4	1,4
ε _{c3} (‰)					1,75					1,8	1,9	2,0	2,2	2,3
ε _{cu3} (‰)					3,5					3,1	2,9	2,7	2,6	2,6
02 F	ebruary 21	008											10	

Product form	Bars ar	and de-coiled rods Wire Fabrics			s	
Class	A	в	С	A	B	с
Characteristic yield strength f _{yk} or f _{0,2k} (MPa)	cold w	orked	400 t	o 600 rolled	seisn	nic
$k = (f_{\rm t}/f_{\rm y})_{\rm k}$	≥1,05	≥1,08	≥1,15 <1,35	≥1,05	≥1,08	≥1,15 <1,35
Characteristic strain at maximum force, e uk (%)	≥2,5	≥5,0	≥7,5	≥2,5	≥5,0	≥7,5
Fatigue stress range (N = 2 x 10 ⁶) (MPa) with an upper limit of 0.6f _{yk}		150			100	

Table for	dete	rminiı	ng fina	l Stru	ictura	l Clas	S
Structural Class							
Criterion	Exposure	Class accor	ding to Table	4.1			
Chterion	X0	XC1	XC2 / XC3	XC4	XD1	XD2 / XS1	XD3 / XS2 / XS3
Design Working Life of 100 years	increase class by 2	increase class by 2					
Strength Class 1) 2)	≥ C30/37 reduce class by 1	≥ C30/37 reduce class by 1	≥ C35/45 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C45/55 reduce class by 1
Member with slab geometry (position of reinforcement not affected by construction process)	reduce class by 1	reduce class by 1					
Special Quality Control of the concrete production ensured	reduce class by 1	reduce class by 1					
03 Eebeuseu 2009							20
02 rebruary 2008							29
						fu	Delft

The value c _{min,dur} is finally determined as a function of the structural class and the exposure class: able 4.4N: Values of minimum cover, c _{min,dur} requirements with regard to durability for reinforcement steel in accordance with EN 10080.									
able 4.1	VD1 / V01	XD2 / XC2	VD2 / VC						
15	20	25	30						
20	25	30	35						
25	30	35	40						
30	35	40	45						
35	40	45	50						
40	45	50	55						
	Sector Sector<	XC4 XD1/XS1 15 20 25 30 30 35 35 40 40 45	XC4 XD1 / XS1 XD2 / XS2 15 20 25 20 25 30 25 30 35 30 36 40 35 40 45						

Methods to analyse structures

5.6 Plastic methods of analysis

- (b) Strut and tie analysis (lower bound)
- Suitable for ULS
- Suitable for SLS if compatibility is ensured (direction of struts oriented to compression in elastic analysis

Bending with or without	axial force
Prof.dr.ir. J.C. Walraven	
02 February 2008	
	41
Group Concrete Structures	

Torsion	
Prof.dr.ir. J.C. Walraven	
02 February 2008	
	72
Group Concrete Structures	T UDelft
	Delft University of Technology

Punching shear	
Prof.dr.ir. J.C. Walraven	
02 February 2008	
	78
Group Concrete Structures	T UDelft
	Dulift University of Technology

В

TUDelft

The table below gives the v structural system. The table relatively high (ρ =1,5%) an ratio. These values are calc satisfy the deflection limits of	alues of K furtherm id low (ρ= ulated for given in 7.	(Eq.7.16), cc ore gives limi =0,5%) longi concrete C30 .4.1 (4) and (prresponding it I/d values tudinal reinf and $\sigma_s = 3$ (5).	g to the for a forcement 10 MPa and
		4 50/	1 E04	7
Structural system	K	ρ = 1,5%	p = 1,570	
Structural system Simply supported slab/beam	K 1,0	ρ = 1,5%	p = 1,5%	-
Simply supported slab/beam End span	K 1,0 1,3	ρ = 1,5%	ρ = 1,5% I/d=20 I/d=26	-
Structural system Simply supported slab/beam End span Interior span	K 1,0 1,3 1,5	ρ = 1,5% I/d=14 I/d=18 I/d=20	β = 1,3% I/d=20 I/d=26 I/d=30	-
Structural system Simply supported slab/beam End span Interior span Flat slab	K 1,0 1,3 1,5 1,2	ρ = 1,5% //d=14 //d=18 //d=20 //d=17	ρ = 1,3% 1/d=20 1/d=26 1/d=30 1/d=24	-
Structural system Simply supported slab/beam End span Interior span Flat slab Cantilever	K 1,0 1,3 1,5 1,2 0,4	ρ = 1,5% //d=14 //d=18 //d=20 //d=17 //d=6	β = 1,3% I/d=20 I/d=26 I/d=30 I/d=24 I/d=8	
Structural system Simply supported slab/beam End span Interior span Flat slab Cantilever	K 1,0 1,3 1,5 1,2 0,4	ρ = 1,5% //d=14 //d=18 //d=20 //d=17 //d=6	β = 1,3% /d=20 /d=26 /d=30 /d=24 /d=8	

Γ

Lightweight concrete density classification

Density class		1,0	1,2	1,4	1,6	1,8	2,0
Oven dry density		801-	1001-	1201-	1401-	1601-	1801-
(kg/m ³)		1000	1200	1400	1600	1800	2000
Density	Plain concrete	1050	1250	1450	1650	1850	2050
(kg/m ³)	Reinforced concrete	1150	1350	1550	1750	1950	2150

fuDelft

EN1992-2

G. Mancini Politecnico di Torino

	2		Safety format	Ya		
Load case (bending moments)	Time	Υ _{Gu} /Υ _g	$M(\gamma_{gl})^*$ [kNm*103]	$M(\gamma_{gl})/\gamma_{Rl}$ [kNm*10 ³]	$\gamma_{g}(M(\gamma_{gl})/\gamma_{gd})$	Gain Г
Maximum negative (X)	t1	1.69	-12.0	-11.3	1.60	14%
Maximum negative (Y)	63	1.69	-12.2	-11.5	1.53	7.1%
Maximum positive (W)	t1	1.64	-9.96	-9.40	1.55	11%
Maximum positive (Z)	83	1.60	-10.6	-10.0	1.51	7.8%
Where: * $M(\gamma_{gl}) = M\left(\frac{\gamma}{2}\right)$	_{αu} ·G+γ _{Qu} ·ζ γ _s	2)				
ž	{	5.01	3	North .	5	
EUROCODES Prof.	 Background Ing. Giuseppe 	and Applicat Mancini - DI	ions - Brussels STR - Politecni	18-20 February 2 co di Torino	2008 🥣	25

		23	Sa	fety format : γ	a SCR		
Dier		Critica	section	Top s	ection		
depth [m]	$\frac{\gamma_{\alpha}}{\gamma_{\alpha}}$	$N(\gamma_{\alpha})'$ [kN×10 ³]	$M(\gamma_{\alpha})^{**}$ [kNm×10 ³]	N Safety [kNm×10 ³]	M Safety [kNm×10 ³]	$\gamma_{\sigma}(E(\gamma_{g})/\gamma_{N})$	Gain T
82	2.45	151	242	134	74.9	2.42	62%
87	2.15	137	243	119	66.5	2.15	43%
92	1.85	122	233	103	57.6	1.86	24%
97	1.58	103	218	86	48.1	1.56	4%
		•N(Y _G	$= N \left(\frac{\gamma_{O_u} \cdot G}{\gamma_{O_u}} \right)$ $= M \left(\frac{\gamma_{O_u} \cdot G}{\gamma_{O_u}} \right)$	Where: $\left(\frac{y}{\gamma_{Q_{1}}} + \gamma_{Q_{2}} \cdot Q\right) = \frac{1}{2}$ $\left(\frac{y}{\gamma_{Q_{1}}} + \gamma_{Q_{2}} \cdot Q}{\gamma_{Q_{1}}}\right) = \frac{1}{2}$	$N\left(\frac{\gamma_{Ou} \cdot (G + g)}{\gamma_{Ol}}\right)$ $M\left(\frac{\gamma_{Ou} \cdot (G + g)}{\gamma_{Ol}}\right)$	<u>2)</u>) 2))	
EURC	CODES - Prof. I	Background ang. Giuseppe	and Application Mancini - DIST	ns - Brussels 18 R - Politecnico	3-20 February 2 di Torino	2008.	31

		- St) Sai	fety format : γ_g	S. S. S.		
Diar				Critica	l section		
depth	You	$N(\gamma_{gl})^*$	$M(\gamma_{gl})^{*}$	$N(\gamma_{gl})/\gamma_{Rd}$	$M(\gamma_{gl})/\gamma_{Rd}$	N Safety	M Safety
[m]	7 si	[kN×103]	[kNm×10 ³]	[kNm×10 ³]	[kNm×10 ³]	[kNm×10 ³]	[kNm×10 ³]
82	2.59	159	260	150	245	152	243
87	2.28	146	262	138	247	139	246
92	1.96	129	251	122	237	123	236
97	1.67	110	234	104	221	104	220
				Where:			
		• N(7	$f(t) = N\left(\frac{\gamma_{Q_k} \cdot C}{t}\right)$	$\left(\frac{\vec{r} + \gamma_{Q_{0}} \cdot Q}{\gamma_{g_{0}}}\right) = \vec{r}$	$N\left(\frac{\gamma_{Q_{\theta}} \cdot (G + Q)}{\gamma_{g^{2}}}\right)$	<u>9</u>)	
		"мо	$(\gamma_{gl}) = M\left(\frac{\gamma_{Q_{gl}}}{m}\right)$	$\left(\frac{G + \gamma_{Qu} \cdot Q}{\gamma_{gl}}\right) = $	$M\left(\frac{\gamma_{O_{\theta}} \cdot (G + \zeta)}{\gamma_{\theta}}\right)$	<u>2)</u>]	
	2		.01	5	The second	₽ ⁵	
EURO	CODES - Prof. I	Background ng. Giuseppe	and Applicatior Mancini - DIST	ns - Brussels 18 R - Politecnico	3-20 February 2 di Torino	2008	32

1. I e	Reduc extrem	tion of p e tense	restress d fibre i	sing up n prese	to read ence of	hing of M _{freq}	f _{ctm} at	the	
Active tendons	0	1	2	3	4	5	6	7	8
N _{orec} [kN]	0.00	-2852.28	-5704.56	-8556.84	-11409.12	-14261.40	-17113.68	-19965.96	-22818.24
M _{orec} [kN m]	0.00	-3166.03	-6332.06	-9498.09	-12664.12	-15830.15	-18996.18	-22162.22	-25328.25
M _{ress} [kN m]	5933.88	10497.53	15061.17	19624.82	24188.46	28752.11	33315.75	37879.39	42443.04
o _{inf} [MPa]	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
M _{frea} [kN m]	51933.5	48767.47	45601.438	42435.41	39269.38	36103.35	32937.32	29771.28	26605.25
	Ir	such cc M _{Rc}	M_{freq}	add ordi with y _c	nary rein = 1.3 a	nforcem and $\gamma_{S} =$	ent so t	hat	

	.55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
t (age of concrete for estimating the delayed strains)	γ _t
<i>t</i> < 1 year	1
t = 5 years	1,07
t = 10 years	1,1
t = 50 years	1,17
t = 100 years	1,20
t = 300 years	1,25
()	A Charles

Interna	l actions layer	on the	Cracked	pa	Concre aramet	ete ers	Action reinfor at t	ons in cement	Reinfor calcul c+	cement ated at ⋅₀/2
nsd22	nsd33	nsd23	case	θ	v f_	σ_(f)	norm	n	A_(x)nec	A_(y)neo
(KN/m)	(KN/m)	(KN/m)	(-)	(°)	(N/n	nm²)	(kN/m)	(kN/m)	(cm ² /m)	(cm ² /m)
						and for	21	2		
005	-3904	474	no	45.0	17.6	17.6	0.0	0.0	15.7	15.7
-695	M	inimum n	einforcer	ment	ø 20/2	0 = 15	5.7 cm²/	m	ł	ł
-095	M	inimum n	einforcer Lo	wer I	ø 20/2 ayer v	0 = 15 erifica	5.7 <i>cm²/</i>		ł	1
-695 Interna	I actions of layer	on the	Lo Cracked	wer I	ø 20/2 ayer v Concre	0 = 15 erifica te ers	ation Action reinford at t.	m ins in cement	Reinfor calcula c+	cement ated at $\phi/2$
-695 Interna	I actions layer	on the	Lo Cracked	wer I	¢ 20/2 ayer v Concre	0 = 15 erifica te ers $\sigma_{c}(f)$	Action	m ms in cement wp/2	Reinfor calcula c+	cement ated at φ/2 A_(γ)nec
Interna	I actions layer	on the nsd23	Lo Cracked Cracked	ment wer I	¢ 20/2 ayer v Concre	0 = 15 erificate te ers $\sigma_c(f)$ im ²)	Action Action Action at t _e (kN/m)	/m pins in cement up/2 n _{R200} (kN/m)	Reinfor calcula c+ A(x)nec c(cm²/m)	cement ated at φ/2 A_(y)nec (cm²/m)
Interna nsd22 (KN/m)	I actions layer nsd33 (KN/m)	on the nsd23	Cracked Cracked (-)	ment wer I	ø 20/2 ayer v Concre rramete	0 = 15 erifica te ers $\sigma_{c}(f)$ im ²)	ation Actio reinford (kN/m)	m sin cement m/2 n _{R2001} (kN/m)	Reinfor calcula c+ A_(x)nec (cm²/m)	cement ated at $\phi/2$ (cm ² /m)

Interna	l actions layer	on the st	Cracked	(pa	Concre aramet	ete ers	Actic reinfor at t	ns in cement	Reinfor calcula c+	cement ated at
nsd22	nsd33	nsd23	case	θ	$\nu \text{ fcd}$	$\sigma_{c}(f)$	n _{R1(x)}	n _{R2(v)}	A _s (x)nec	A _s (y)nec
(KN/m)	(KN/m)	(KN/m)	(-)	(°)	(N/n	nm²)/J	(kN/m)	(kN/m)	(cm ² /m)	(cm ² /m)
-695	-3904	474	no	45.0	17.6	17.6	0.0	0.0	15.7	15.7
		2		ower	layer	verific	ation	5		•
			~~~~	5	Conor	to	Actio	ns in	Reinfor	cement
Interna	al actions layer	on the _{	Cracked ?	pa	aramet	ers	reinfor at t	cement	calcul c+	ated at ⋅₀/2
Interna	al actions layer nsd33	on the nsd23	Cracked ? case	pa 04	aramet	ers σ_(f)	reinfor at t	cement up/2 n _{R2(v)}	calcul c+ A _s (x)nec	ated at ·∳/2 A₅(y)nec
Interna nsd22 (KN/m)	a actions layer nsd33 (KN/m)	on the nsd23 (KN/m)	Cracked ? case (-)	ра	v fcd (N/r	$\sigma_c(f)$	reinfor at t n _{R1(x)} (kN/m)	cement n _{R2(y)} (kN/m)	Calcul C4 A _s (x)nec (cm²/m)	ated at $\frac{\phi/2}{A_s(y)neo}$ (cm ² /m)
Interna nsd22 (KN/m)	al actions layer nsd33 (KN/m)	on the nsd23 (KN/m)	Cracked ? case (-)	pa θ (°)	v fcd (N/r	ers $\sigma_c(f)$	reinfor at t n _{R1(x)} (kN/m)	cement n _{R2(y)} (kN/m)	caicui c+ A _s (x)nec (cm²/m)	ated at ·∳/2 A _s (y)nec (cm²/m)

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

![](_page_55_Figure_4.jpeg)

![](_page_55_Figure_5.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

![](_page_56_Figure_4.jpeg)

![](_page_56_Figure_5.jpeg)

## EN1992-3

T. Jones Arup

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_1.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_60_Figure_3.jpeg)

![](_page_60_Figure_4.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_61_Picture_2.jpeg)

![](_page_61_Picture_3.jpeg)

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_5.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_62_Picture_3.jpeg)

![](_page_62_Figure_4.jpeg)

![](_page_62_Figure_5.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_63_Picture_1.jpeg)

![](_page_63_Picture_2.jpeg)

![](_page_63_Picture_3.jpeg)

![](_page_63_Figure_4.jpeg)

![](_page_63_Figure_5.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_64_Figure_2.jpeg)

![](_page_64_Picture_3.jpeg)

![](_page_64_Figure_4.jpeg)

![](_page_64_Figure_5.jpeg)

() E	UROCODES	1911 – Dauwninalize of information servicebres	EN 1992-3:2006	ARUI
4	Annex	N – Provisio		nt Joints
	Option	Method of control	Movement joint spacing	Reinforcement
1	(a)	continuous – full restraint	Generally no joints, though some widely spaced joints may be desirable where a substantial imposed deformation (temperature or shrinkage) is expected.	Reinforcement in accordance with Chapters 6 and 7.3
L	(b)	Close movement joints - minimum restraint	Complete joints at greater of 5 m or 1.5 times wall height	Reinforcement in accordance with Chapter 6 but not less than minimum given in 9.6.2 to 9.6.4.

![](_page_65_Figure_1.jpeg)

![](_page_65_Picture_2.jpeg)